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Want to touch on a number of concepts including:

• Weak Focusing
• Betatron Tune
• Strong Focusing
• Closed Orbit
• One-Turn Matrix
• Twiss Parameters and Phase Advance
• Dispersion
• Momentum Compaction
• Chromaticity
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Weak Focusing
–V. Veksler and E. M. 

McMillan around 1945

Strong Focusing
–Christofilos (1950), 

Courant, Livingston, and 
Snyder (1952)
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The first synchrotrons were of the so called weak-
focusing type. 

• The vertical focusing of the circulating 
particles was achieved by sloping magnetic 
fields, from inwards to outwards radii. 

• At any given moment in time, the average 
vertical magnetic field sensed during one 
particle revolution is larger for smaller radii of 
curvature than for larger ones. 

Weak Focusing
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Uniform field is focusing in the radial plane but not in the 
vertical plane
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Stability in BOTH PLANES requires that 0<n<1
Vertical focusing is achieved at the expense of horizontal 
focusing

rdr
BdBn

/
/

−=

Focusing in both planes if field lines bend outward 
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The number of oscillations about the design orbit in one turn

design orbit

design orbit
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Expressing these results in terms of derivatives measured along the 
equilibrium orbit

( )

orbitdesign   therespect to with derivative a is '      where
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Stability requires that 0<n<1

The particle will oscillate about the design trajectory with the number of 
oscillations in one turn being

ly  vertical          n

radially        n-1

The number of oscillations in one turn is termed the tune of the ring.

For stable oscillations the tune is less than one in both planes.

Fundamental Accelerator Theory, Simulations and Measurement Lab – Arizona State University, Phoenix  January 16-27, 2006

Weak focusingWeak focusingOptical Functions
& Betatron Motion

D. Robin



9

Disadvantage

• Tune is small (less than 1)
• As the design energy increased so does the circumference of the 

orbit 
• As the energy increases the required magnetic aperture increases

for a given angular deflection
• Because the focusing is weak the maximum radial displacement is 

proportional to the radius of the machine. 

The result is that the scale of the magnetic components of a high
energy synchrotron become unreasonably large and costly
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• The first synchrotron of this type was the Cosmotron at the 
Brookhaven National Laboratory, Long Island. It started operation 
in 1952 and provided protons with energies up to 3 GeV. 

• In the early 1960s, the world’s highest energy weak-focusing 
synchrotron, the 12.5 GeV Zero Gradient Synchrotron (ZGS) 
started its operation at the Argonne National Laboratory near 
Chicago, USA.

• The Dubna synchrotron, the largest of them all with a radius of 28 
meters and with a weight of the magnet iron of 36,000 tons

Cosmotron
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Solution 

Strong focusing

Use strong focusing and defocusing elements 
(|n| >>1)
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One would like the restoring force on a particle displaced from the 
design trajectory to be as strong as possible. 

ALS Bend (n~25)

• In a strong focusing lattice there is a 
sequence of elements that are either 
strongly focusing or defocusing.

• The overall lattice is “stable”
• In a strong focusing lattice the 

displacement of the trajectory does 
not scale with energy of the machine

• The tune is a measure of the amount 
of net focusing.

Fundamental Accelerator Theory, Simulations and Measurement Lab – Arizona State University, Phoenix  January 16-27, 2006

Strong FocusingStrong FocusingOptical Functions
& Betatron Motion

D. Robin



13

Fundamental Accelerator Theory, Simulations and Measurement Lab – Arizona State University, Phoenix  January 16-27, 2006

StrongStrong--Focusing SynchrotronsFocusing SynchrotronsOptical Functions
& Betatron Motion

D. Robin

In 1952 Ernest D. Courant, Milton Stanley Livingston 
and Hartland S. Snyder, proposed a scheme for 
strong focusing of a circulating particle beam so 
that its size can be made smaller than that in a weak-
focusing synchrotron. 

• In this scheme, the bending magnets are made 
to have alternating magnetic field gradients; 
after a magnet with an axial field component 
decreasing with increasing radius follows one 
with a component increasing with increasing 
radius and so on. 

• Thanks to the strong focusing, the magnet 
apertures can be made smaller and therefore 
much less iron is needed than for a weak-
focusing synchrotron of comparable energy.

• The first alternating-gradient synchrotron 
accelerated electrons to 1.5 GeV. It was built at 
Cornell University, Ithaca, N.Y. and was 
completed in 1954.

Size comparison between the 
Cosmotron's weak-focusing 
magnet (L) and the AGS 
alternating gradient focusing 
magnets
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Describing the Motion

In principle knowing both the magnetic lattice and the 
initial coordinates of the particles in the particle beam is all
one needs to determine where all the particles will be in 
some future time.

Ray-tracing each particle is a very time consuming 
especially for a storage ring where the particles go around 
for billions of turns. 

Can do much more

Want to understand the characteristics of the ring Maps
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• Some parts of the ring the beam is large and in others it is small
• The particles oscillate around the ring a number of times
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• Tune is the number of oscillations that a particle
makes about the design trajectory

Design orbit

On-momentum
particle trajectory
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• Use a map as a function to project a particles 
initial position to its final position.

• A matrix is a linear map
• One-turn maps project project the particles 

position one turn later
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Begin with equations of motion Lorentz force

Change dependent variable from time to 
longitudinal position

Integrate particle around the ring and find the 
closed orbit

Generate a one-turn map around the closed orbit

Analyze and track the map around the ring

Fundamental Accelerator Theory, Simulations and Measurement Lab – Arizona State University, Phoenix  January 16-27, 2006

Generating a MapGenerating a MapOptical Functions
& Betatron Motion

D. Robin



19

A closed orbit is defined as an orbit on which a 
particle circulates around the ring arriving with the 
same position and momentum that it began.

In every working story ring there exists at least one 
closed orbit.

Closed orbit
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A one-turn map maps a set of initial coordinates of a 
particle to the final coordinates, one-turn later. 

The map can be calculated by taking orbits that have a 
slight deviation from the closed orbit and tracking 
them around the ring.

Closed orbit
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There are two approaches to introduce the motion of 
particles in a storage ring

1. The traditional way in which one begins with Hill’s 
equation, defines beta functions and dispersion, 
and how they are generated and propagate, …

2. The way that our computer models actually do it

I will begin with the first way
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Assume that in a strong focusing synchrotron synchrotron the focusing varies 
“piecewise around the ring

s
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Illustration in the simple case of Hill’s Equation – on-
energy

Analytically solve the equations of motion
Generate map
Analyze map

In a storage ring

with periodic 
solutions
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Solution of the second condition

If we select the integration constant to be 1:                  
then 

' ' ''

'

0
const

β ψ βψ

βψ

+ =

⇒ =

0

( ) (0)
( )

s dss
s

ψ ψ
β

= +∫
Knowledge of the function β(s) along the line allows 
to compute the phase function

' 1βψ =
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Define the Betatron or twiss or lattice functions 
(Courant-Snyder parameters)
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• Eliminating the angles by the position and slope we define 
the Courant-Snyder invariant

• This is an ellipse in phase space with area πε
• The twiss functions have a geometric 

meaning

• The beam envelope is

• The beam divergence
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Meaning of Beam Envelope and Beta Function and Emittance

Area of ellipse the same everywere (emittance)
Orientation and shape of the ellipse different everywhere (beta and alpha function)
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( )'' 0u k s u+ =
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The general solution of

Can be written as

( ) ( ) cos( ( ) (0))u s s sε β ψ ψ= −

There are two conditions that are obtained

2
'' 2 '2 21 1 ' 0

2 2
kββ β ψ ββ − − + = 
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Steps

1. Compute the one turn transfer matrix
2. Extract the twiss parameters and tunes
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One can write the linear transformation, 
Rone-turn, between one point in the 
storage ring (i) to the same point one 
turn later

1' ' ' '

where  = 
' '

i i

one turn

x C S x
x C S x

C S
R

C S

+

−

     
=     

     

 
 
 

i
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The one turn matrix (the first order term of the map) can 
be written

Where α, β, γ are called the Twiss parameters

and the betatron tune, ν = φ/(2*π)

For long term stability φ is real 
|TR(R)|= |2cos φ |<2

cos sin sin
 

' ' sin cos sinone turn

C S
R

C S
ϕ α ϕ β ϕ
γ φ ϕ α ϕ−

+   
= =   − −   
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One can diagonalize the one-turn matrix, R

This separates all the global properties of the matrix into N and the 
local properties into A.

In the case of an uncoupled matrix the position of the particle each 
turn in x-x’ phase space will lie on an ellipse. At different points in the
ring the ellipse will have the same area but a different orientation.

1
one turnone turnN AR A

−

−
− =

x

x’

x

x’
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The eigen-frequencies are the tunes. A contains information about the 
beam envelope. In the case of an uncoupled matrix one can write A
and R in the following way:

The beta-functions can be propagated from one position in the ring to 
another by tracking A using the transfer map between the initial point 
the final point

This is basically how our computer models do it.

1
one turnone turnN AR A

−

−
− =

1 0 0
1

cos sin cos sin sin
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α

φ ϕ α γ φ ϕ α ϕβ β β
β

 
   +      =       −− − −        

 

f fi iA R A=
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Transport of the twiss parameters in terms of the transfer 
matrix elements

Transfer matrix can be expressed in terms of the twiss
parameters and phase advances

2 2

2 2
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Assume that the energy is fixed no cavity or damping
• Find the closed orbit for a particle with slightly 

different energy than the nominal particle. The 
dispersion is the difference in closed orbit between 
them normalized by the relative momentum 
difference 

∆p/p = 0

∆p/p > 0
' ' ' '

,

,

x y

x y

p px D y D
p p
p px D y D
p p

∆ ∆
= =
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= =
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Dispersion, D, is the change in closed orbit as a function 
of energy

Dispersion

∆E/E = 0

∆E/E > 0

x
Ex D
E

∆
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• Dispersion is the distance between the 
design on-energy particle and the design off 
energy particle divided by the relative 
difference in energy spread between the two.

' '

x

x

px D
p
px D
p

∆
=

∆
=
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Momentum compaction, α, is the change in the closed 
orbit length as a function of momentum.

∆E/E = 0

∆E/E > 0

L p
L p

α∆ ∆
=
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• Off-momentum particles are not oscillating around
design orbit, but around chromatic closed orbit

• Distance from the design orbit depends linearly with
momentum spread and dispersion 

Design orbit
Design orbit

On-momentum
particle trajectory

Off-momentum
particle trajectory

Chromatic close orbit

Fundamental Accelerator Theory, Simulations and Measurement Lab – Arizona State University, Phoenix  January 16-27, 2006

Chromatic Closed  OrbitChromatic Closed  OrbitOptical Functions
& Betatron Motion

D. Robin



42

Focal length of the lens is dependent upon energy

Larger energy particles have longer focal lengths
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By including dispersion and sextupoles it is possible to 
compensate (to first order) for chromatic aberrations

The sextupole gives a position dependent
Quadrupole

Bx = 2Sxy
By = S(x2 – y2)
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• No dispersion or dispersion slope at 
the beginning and end of the line
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• No dispersion or dispersion slope at the end of the 
line

• Dispersion is negative in the central bends (cuts the 
corner)
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• No dispersion or dispersion slope at the end of the line
• Dispersion is positive in the central bend but the central 

bend is inverted
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In an linear uncoupled machine the turn-by-turn positions 
and angles of the particle motion will lie on an ellipse

0

0 0
'

( ) ( ) cos( ( ) )

( ) cos( ( ) ) sin( ( ) )
( ) ( )

x s s s

x s s s
s s

β
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β β

= +
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Area of the ellipse, :

x xx x

ε

ε γ α β= + +
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Beam ellipse matrix

Transformation of the beam ellipse matrix

x
xbeam

β α
ε

α γ
− 

=  − 
∑

,, , ,

Tx x
x i fbeam f beam i x i f
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=∑ ∑

Fundamental Accelerator Theory, Simulations and Measurement Lab – Arizona State University, Phoenix  January 16-27, 2006

Transport of the beam ellipseTransport of the beam ellipseOptical Functions
& Betatron Motion

D. Robin



49

Fundamental Accelerator Theory, Simulations and Measurement Lab – Arizona State University, Phoenix  January 16-27, 2006

Transport of the Transport of the 
Beam EllipseBeam Ellipse

Optical Functions
& Betatron Motion

D. Robin



50

Transport of the twiss parameters in terms of the transfer 
matrix elements

Transfer matrix can be expressed in terms of the twiss
parameters and phase advances

2 2
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This approach provides some insights but is limited

Begin with on-energy no coupling case. The beam is 
transversely focused by quadrupole magnets. The 
horizontal linear equation of motion is 

2

2

3 356

( ) ,

   where ,  with 
( )

             being the pole tip field
             the pole-tip radius, and
            [T-m] . [GeV/c]

T

T

d x k s x
ds
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B a

B
a
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= −
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≈
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The solution can be parameterized by a psuedo-
harmonic oscillation of the form

0

0 0
'

,
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•• At the At the azimuthalazimuthal position position ss in an proton storage ring, the in an proton storage ring, the TwissTwiss parameters are parameters are 
ββxx=10 m, =10 m, ββyy=3 m, and =3 m, and ααxx==ααyy=0. If the beam =0. If the beam emittanceemittance εε is 10 nm for the horizontal is 10 nm for the horizontal 
plane and 1 nm for the vertical one and the dispersion function plane and 1 nm for the vertical one and the dispersion function ηη at that location at that location 
is zero for both planes, what is the is zero for both planes, what is the rmsrms beam size (beam envelope) and the beam size (beam envelope) and the rmsrms
beam divergence for both planes at the location beam divergence for both planes at the location ss? What will be the case for an ? What will be the case for an 
electron beam?electron beam?

•• Explain what the dispersion function represent in a storage rinExplain what the dispersion function represent in a storage ring. Explain what is g. Explain what is 
the difference between dispersion and chromaticity.the difference between dispersion and chromaticity.

•• Explain the difference between an Explain the difference between an achromatachromat cell and an cell and an isochronousisochronous one.one.

•• In the horizontal direction, the oneIn the horizontal direction, the one--turn transfer matrix (map) for a storage turn transfer matrix (map) for a storage 
ring is:ring is:

•• Is the Is the emittanceemittance preserved?preserved?
•• Is the motion stableIs the motion stable









7.005.0

15.1
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1. Show that there are two conditions that can be derived 
relating 

2.         

( )'' 0u k s u+ =

( ) ( ) cos( ( ) (0))u s s sε β ψ ψ= −

( ), ( )s sβ ψ

x

x’

Sketch the phase space ellipse at these locations

Focusing quad
Beam envelope


